SOAL 6 UJIAN TENGAH SEMESTER Reponse Spectrum in Seismic Analysis JAWABAN KIRIM EMAIL – DALAM BENTUK ZIP SOAL 1, 2, 3, 4, 5 DAN 6 BOBOT NILAI MASING2 SOAL 15%

- DEFINE MODEL 3DIMENSI DENGAN PLAT 12 CM (KGf, M, C)
- GEDUNG (4+NO.ABSEN) LANTAI, ARAH X- 5 BAYS, ARAH Y=3 BAYS
- KETENTUAN LAIN TENTUKAN SENDIRI
- DEFINE BEBAN ... SIDL DINDING, HIDUP LANTAI, GEMPA
- <u>Define > function > response spectrum.</u>
- <u>Add new function, name = Respons.</u>,
- GUNAKAN GRAFIK GEMPA kota Tambun, Bekasi

- <u>Define > analysis cases.</u>
- <u>Add new function, new = Res x</u>, karena gaya gempa arah-X
- <u>Analysis case = Response spectrum.</u>
- Acceleration U1 / local koordinat (global X) _Scale =I/R= 2.31

• Select Res-x

- Add copy
- Name Res-y
- <u>Acceleration U2</u> scale =2.31
- Kerjakan terus sampai selesai enter dan ok

•

Time History Analysis SAP2000

• Define >

- o function > time history
- Function type = function from file
- o Name = TimeHistorY
- <u>o Browse dan pilih elcentro.</u>
- <u>Values</u>pilih <u>= time and function value</u>,
- <u>o</u> Display

• Define > Analysis Case

- $\circ \quad \text{New case name} = \text{TH} \underline{x}$
- Analysis case = time history
- $\circ \quad Function = Time HistorY, scale = 32.2$
- o Select lines, model, transient.
- Select TH-x

0

- Add copy name Th-y
 - \circ Load name = U2
 - o Teruskan close sampai selesai

Define:

- Define > Material,
 - Concrete, modify.
 - \circ Fy = fys = 60ksi,
 - \circ f'c = 4ksi
- Define > frame section.
 - Add rectangular, name B15 * 12. Reinforcement,
 - Beam clear cover top = bottom = 2.5"
 - \circ Name = slab
- Define > Area sections,
 - Asec 1 modify,
 - thickness bending = membrane = 6".
- Define > load cases, add live load.
- Define > add default combo check concrete,
 - \circ Convert to user check boxes.
- Draw > quick draw area, draw the area.
- Draw > quick draw frame draw beam, B15 x 12
- Select edge paints at both ends

Assign

- Assign > joint restrained, hinge support.
- Select beams
- Assign > frame > insertion point, select slab
- Select slab
- Assign > area load

- Uniformly Distributed Load
- Analyze > set analysis uses,
 - o Select Slab
- Analyze > run analysis model,
 - o Do No run
 - \circ Run now
- Unit K-is

Display:

- Display > deformed shape,
 - Select UDCON2
 - Drag the mouse over the slab
 & find max deflation
- Display > show forces stresses
 - o Area UDCON2
 - o Design steel,
 - o Bottom face,
 - o Area/ Select max value
- Display > show forces stresses
 - o Area Ast 2
 - o Select max value
- Display > show forces stresses

 Area too face
 Select max value
- Display > show forces stresses

 Area Ast 1
- Display > concrete frame design
 - Select design combo
 - o Select UDCON1, UDCON2

Design:

- Design > concrete frame design

 Start design/checks
- Design > Concrete frame design

- Verify all members passed
- All members should pass otherwise increase beam size to pass
- Design > concrete frame design > display design/np Select longitudinal reinforcement
- For beam, for both upper and lower face, select max value & for column select max value and calculate No. of bars